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Graph Neural Network Powers Diverse Research Areas
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GNN>MLP?

®* Empirical evidence from three node classification tasks, suggests GCNs outperform MLPs.
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What role does graph convolution play
during gradient descent training?



Feature Learning

® It is widely believed in literature that the NTK analyses cannot fully explain the success
of deep learning, as the neural networks in the NTK regime are almost “linearized”
®* Feature learning theory states that the weights can escape the ball and align to the

feature Iin data.

Lazy training Feature learning



Data Model

* Two classes v € {—1,1}

®* Theinput x € R?? is composed of a signal patch and noise path:

Signal patch £~ N(0,02 - (T—pp’ - |lpl?)

® Stochastic Block Model for graph structure

A = (aij)n XN

a;; ~ Ber(p) Yi = Yj

Ajj ™~ Ber(s) Ys = —Yj



Neural Network Mode|

* GNN

Graph Convolution




Gradient descent training

®* Gradient descent training
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lterative analysis of the signal-noise decomposition

®* To analyze the feature learning process of graph neural networks during gradient descent

training, we introduce an iterative methodology, based on the signal-noise decomposition.

Lemma S.1. The coefficients 79(.?,, ﬁgt,z,z, Eﬁ-t,)« . in decomposition ( E) adhere to the following equa-
tions: -
0) —(0
Voo s Pynis 20, = 0, (11)
1 n - ~ ~
WD = = LSO (W, Gage) s el (12)
nm <
fm = m—— = _(t+1) (¢ n _ t t) 3 .
:ﬁgfy)«,iépﬁf?«,ill(pgfi,i20). —) Pg-,r,i) — P§,3~,i — . Z Dk 1 .g;c( ) 'U'(<W§’2,€k>) . ||€zH§ : ]l(yk; — ]), (13)
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Two-stage dynamics
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® Stage one: feature learning = small

Lemma 5.3. Under the same conditions as Theorem B, there exists T7 = O(n_lmag 1= | pl|5 )
such that

* max, 73( ,,,1) ] Q(l)for] € {£1}.

|p3m| —|O (aoap\/c_i/\/n p+s)) forall j € {£1},r € |m|,i € [n]and 0 <t < T7.

Lemma 5.4. Let T, T be deﬁned in Theorem 4.3 and Lemma 5.3 respectively and W* be the

collection of GCN parameters W7 . = ( ) )+ 2gmlog(2q/€) - j - |pll5? - . Then under the same
conditions as Theorem[d.3, for any t € [T 1, T'|, it holds that:

t max, 7( 1) > 2,.\7’] e {1} andjpg, | < aoopr/d/(n(p + s))forall] € {1}, r € [m)]

Y FY A

andi€n). TTTTTTTomTosTemes
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1t—T7+1 Zs:Tl S ( ) (2q 1)7’](t T1+1) ! (2q—1)° I
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Here we denote |W||p = \/|[W11|% + [[W_1]|%.



Main Result

Main condition

Theorem 4.3. Suppose ¢ > 0, and1 let 1" = @(

== |arge
m Ssmall
—(9-2)5—q —1,-1,,3
" 'maoy lpella® + 0 e e]l52).

Under Assumption|4.1||if n - SNR? - \/n(p + s)

— (1), where SNR. £ ||p||2/(0,V/d) is the

signal-to-noise ratio, then with probabilily at least 1 — d— 1, there exists a 0 < t < T such that:

-~ .- e - -

= (1) jor j € {1},

* The. GCN does not_memorize the noises in the training data: max;, ; \pj | =

" . . . S S S S S S S e e e e e e

* The training loss converges 1o , i.e.j LEN(W®) <

e The trained GCN achieves a small

where c1 and co are positive constants.
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test loss:

LGN (W) < ¢ie + exp(—can?).




GNN vs CNN
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'n - SNR? - \/n(p + s)" = Q(1) and n= |

Corollary 4.4 (Informal). Under assumption|4.1 \ if

SNR™7 = Q(1), then with probability at least 1 — d=, then there exists a t such that:

e The trained GNN achieves a small test loss:

LGN (WMD) < ¢re + exp(—can?).

o The trained CNN has a constant order test loss: LS (W) = O(1).

Post-training GNN can achieve a small test loss
Post-training CNN has a constant order test loss

(Cao et al. Benign Overfitting in Two-layer Convolutional Neural Networks, NeurlPS 2022)




GNN vs CNN
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Train Loss

—— GNN Train Loss
—— CNN Train Loss
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Train Accuracy

—— GNN Train Accuracy
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Training loss, testing loss, training accuracy, and testing accuracy for
both CNN and GNN over a span of 100 training epochs.
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GNN vs CNN
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Test accuracy heatmap for CNN and GNN after training.
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Summary

This paper utilizes a signal-noise decomposition to study the signal learning and noise
memorization process in training a two-layer GCN.

We provide specific conditions under which a GNN will primarily concentrate on

signal learning, thereby achieving low training and testing errors.

Our results theoretically demonstrate that GCNs, by leveraging structural
information, outperform CNNs in terms of generalization ability across a broader
benign overfitting regime.
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Thank you!

a Contact: wei.huang.vr@riken.jp
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